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Abstract-Most of the research on direct contact melting has been carried out on the assumption of steady 
state or quasi-steady state. Such a methodology, however, is difficult to apply to problems in which the 
boundary conditions such as the temperature of heating plate or the external force exerted on the solid 
PCM change abruptly with time. In this study, we show an efficient algorithm to solve the transient 
behavior of direct contact melting. considering the solid movement by external forces exerted on a solid 
body as well as that by melting. The method is based on the enthalpy method, but is especially devised to 
satisfy the force balance on solid phase with velocity variation. It is examined through two test problems. 
The first one is that the system gradually approaches the steady state after the start of melting. The result 
shows good agreement with that by the previous steady state approach, and it is assured that the behavior 
during the transient process to steady state is very reasonable in a viewpoint of a physical phenomenon. 
The second one deals with a rather complicated situation of a copper block above a melting temperature 
being cooled by ice. It was verified that the present methodology can deal with such a conjugate problem 

feasibly and simply. 

INTRODUCTION 

DIRECT contact melting can be observed if a heating 
plate and a solid PCM are pressed against each other 
while the solid is being melted and the melted liquid 
is flowing out through a thin liquid layer. This 
phenomenon occurs in numerous natural and tech- 
nological processes, such as metallurgy, welding, 
geology, nuclear technology and latent thermal stor- 
age system. In general, the heat transfer rate during 
the direct contact melting process is much greater than 
that in the melting dominated by heat convection 
which occurs in a relatively thick space between source 
and solid. Therefore, owing to the practical import- 
ance of the subject, there have been a large number of 
studies to clarify the mechanism of the direct contact 
melting, particularly on a target of the thermal storage 
system which usually needs high heat flux in melting 
process. 

Over the past decade, many papers [l-8] were pub- 
lished in this field and the mechanism of heat transfer 
and the phenomenon of direct contact melting was 
found out through analytical and experimental inves- 
tigations. The results show that the predominant effect 
of heat transfer is mainly the heat conduction in the 
low range of Ste number, but gradually the effect of 
the convection increases with higher Ste number. 

Most of the researches through numerical analysis 
[2, 6, 81 were conducted on the assumption of steady 
state. Actually, if the melting continues under a con- 
stant surface temperature of heating plate and a con- 
stant pressure, the system approaches steady state or 
quasi-steady state, that is, the apparent velocity of the 
solid phase comes to equal the melting speed and the 

liquid-solid interface does not move in space, as long 
as the inertia term in the force balance equation for 
solid phase can be neglected. Experimental inves- 
tigations clarified the validity for such an assumption. 

Nevertheless, the boundary conditions, according to 
the problems, can be changed remarkably with time. 
Furthermore, the transient process of melting itself 
can be the object to be examined. However, the pre- 
vious steady state approaches have a serious limi- 
tation in solving such problems due to a lack of feasi- 
bility and flexibility. 

To solve a transient process of direct contact 
melting, the problem should be treated as a kind of 
moving boundary problem, in which the liquid-solid 
interface moves with time. Some methods to solve 
those moving boundary problems associated with 

phase change have been developed and can be divided 
into two groups; transformed [e.g. 9, IO] and fixed 
grids [e.g. 11, 121. Lacroix and Voller [ 131 recognized 
that both transformed and fixed grids can be applied 
with success to a wide variety of problems and offer 
powerful means for solving a phase change problem. 

The transient behavior during direct contact melt- 
ing can be characterized by the moving solid phase 
which is not fixed in space and has a varying velocity 
with time. Therefore, the moving velocity must be 
calculated together with other dependent variables. 
The transformed grids method is apparently an 
efficient method to solve a phase change problem, but 
seems to be difficult to apply to the present problem. 
A vast amount of calculation is required for region 
transformation; in the transformed grids method, the 
physical region must be mapped from the real region 
each time step and in the present work, on account of 
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NOMENCLATURE 

a, b coefficients, equation (7) ur relaxation factor of liquid 

; 
specific heat fraction 
local liquid fraction 6 thickness of liquid layer 

9 dimensionless gravity acceleration 8 dimensionless temperature 
H height of solid phase P viscosity 
k latent heat of fusion P density 
k thermal conductivity 4 angle of slope. 
M dimensionless mass 
P dimensionless pressure Subscript 
Pr Prandtl number, v/u P, N, S, E, W grid points (Fig. 2) 
q dimensionless heat transfer rate W wall 
R half width of solid m melting point 
s< source term, equation (7) latn latent heat 
Ste Stefan number, c(T, - T,)/h, sens sensible heat 
t dimensionless time cool heat extracted from copper 
T temperature block 
I4 dimensionless x-velocity solid 
V dimensionless y-velocity s liquid. 
V dimensionless moving velocity of solid 

phase Superscript 
(vol) volume of control volume - average 
x, y dimensionless coordinates. b base line 

k kth iterate 
Greek symbols 0 previous time step 

u thermal diffusivity S shifted. 

the unknown solid velocity, the calculation domain is 
in an undetermined state and, consequently, must be 
recalculated whenever the assumed velocity is 
updated ; even in one time step. 

In the enthalpy method (a kind of fixed grids 
method), it is not necessary to obtain the calculation 
domain and to transform the physical region to the cal- 
culation region. In this paper, we suggest an efficient 
algorithm to solve the transient behavior of direct 
contact melting problems, which is based on the 
enthalpy method, but includes the effect of the moving 
solid phase. 

Finally, we illustrate the usefulness and effec- 
tiveness of the algorithm through two test problems ; 
the first one is to solve the geometrically simple system 
which leads to the steady state and to compare the 
solution with the solution by the previous method, 
and the second one is to be associated with the prob- 
lem that the copper block with an initial temperature 
T, is being cooled by the ice. Of course, the surface 
temperature varies not only with time but also with 
the location. 

FORMULATION 

The governing equations appearing in conventional 
enthalpy methods are usually based on primitive vari- 
ables with the energy expressed in terms of enthalpy. 

In nondimensional form, the primitive variable for- 
mulation in two-dimensional Cartesian coordinates is 

Continuity equation : 

aU+d”,() 
ax ay (1) 

Momentum equations : 

au 
z+ug+.g=Pr($+$)-g (2) 

au au 
jj+w&+v-=P ii r($+$)-f$ (3) 

Energy equation : 

ae ae ae a26 a28 1 af 
~+“~+vay=ax’+dy2-~~ (4) 

scales 
time Rk’ 
length R 
velocity uR- ’ 
pressure pa2Rm2 
temperature Tw-Trn 

where p represents the dimensionless pressure ; u and 
v are the dimensionless velocities in the directions of 
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x and y, respectively ; fl is the dimensionless tem- 
perature ; and f is the local liquid fraction. The density 
and thermal conductivity of the solid phase were 
regarded as the same as those of the liquid phase. 

In the above energy equation, the last term in the 
right-hand side is related to the change of the liquid 
fraction or latent heat in a cell. The liquid fraction 
does not change gradually from the liquid region to 
the solid region in the present problem. Even though 
it does not seem to be proper mathematically to 
express this term like equation (4) we determined to 
use it as it is, owing to the convenience for numerical 
calculation. 

Though there are several techniques to solve the 
above momentum equations which correspond to 
both liquid and solid phase regions, we used the 
method by Gartling [14], that is, the viscosity in a 
computational cell is treated as a function of the liquid 
fraction. In the present work, the harmonic average 
value of the viscosity weighted by liquid fraction was 
used. 

1 

p = f/w+(l-.f)/p,’ 
(5) 

By using equation (5), the viscosity (Pr in non- 
dimensional form) in the solid region is taken as a very 
large number (1 x 1 O”), which makes the velocities in 
solid region constant and the viscosity in liquid region 
has its own value. Moreover, in the computational 
cell mixed with both liquid and solid, the viscosity 
varies properly with the liquid fraction. In this way, 
the velocity condition at the liquid-solid interface 
can be taken into account. We used the algorithm 
SIMPLEC [I 51 revised by Van Doormaal as the 
numerical solver. 

The direct contact melting needs one more equation 
to close the problem, which is the force balance for 
the solid body (see Fig. 1). The term of the timewise 
variation of the total mass of solid phase is neglected 
because it is much less than other terms if not in the 
range of a very large Ste number. 

Mg-p= Mg, (P = jo’pd*) (6) 

K R 
Y 

solid PCM 

Mg 

I 
Vsolid 

h 

H 

liquid film heating plate 

FIG. I. Schematic diagram of direct contact melting and the 
force balance for a solid phase body. 

scales 
acceleration C?R-’ 

mass per unit depth pR2 

where M is a dimensionless mass and also denotes 
the aspect ratio of the solid phase (H/R); g is a 
dimensionless gravity acceleration ; and V is a dimen- 
sionless apparent velocity of solid phase. By solving 
the above equation on the base of the pressure dis- 
tribution in the liquid layer, the moving velocity of 
solid phase can be obtained. 

Indeed, the energy equation has a decisive role 
associated with the timewise movement of the liquid- 
solid interface in a phase change problem, in particu- 
lar, in the problem considered here on account of the 
moving solid phase. The driving factor in the source 
term in the energy equation is the local liquid fraction 
f. In a numerical calculation, it is updated iteratively 
from the solution of the energy equation. The dis- 
cretization equation of energy can be expressed 

a,&. = aNBN +asf&.+aEf&+awQw fb 

b = a”pOi+S, (vol), 

s = -_Fss--fop c Sle At 

b = a”p0: + & g (vol), - & 2 (vol), (7) 

where the a’s denote coefficients relating the point P 
and its surrounding nodes (see Fig. 2), as frequently 
appeared in SIMPLE-type method; (vol), is the vol- 
ume of the control volume P; f “p is the liquid fraction 
in the previous time step (see Fig. 3(a)) ; and f “p is the 
liquid fraction at the kth iteration in Pth control vol- 
ume in the current time step. 

From equation (7), it is apparent that the source 
term S, is the timewise change of liquid fraction which 
corresponds to the melting amount in a control vol- 
ume if the solid does not move. On the other hand, in 
the problem considered here, the effect of the moving 
solid body with the varying velocity V must be 
included and, consequently, a special manipulation 
should be demanded, which will be explained using 
Figs. 3(b) and (c). 

ON 
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FIG. 2. Location of grid points in control volumes. 
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FIG. 3. Sketch showing the movement of the liquid-solid 
interface in the control volume where the phase change 
occurs ; (a) solid phase fixed in space, (b) solid phase moving 
with velocity V (4 < 457, (c) solid phase moving with vel- 

ocity V (4 z 45”). 

As shown in Figs. 3(b) and (c), it is modeled that 
the liquid-solid interface moves by the distance of 
VAt (VS,ii,,At in the figures) in the direction of the 
velocity of the solid body. The melting proceeds on 
the base of that shifted liquid-solid interface, different 

(9) 

from that in the fixed solid problem. Therefore, the 
liquid fraction at the previous time step f “p in equation 
(7) should be replaced by the base liquid fraction f i, 
which is defined as 

fi =fop-sp (8) 

where f”P refers to the cross-hatched region in Figs. 
3(b) and (c). For the accurate calculation of yP, the 
location of the liquid-solid interface within a grid is 
required. In the present work, it is assumed that the 
line can be approximated by a straight line cutting 
through the grid. If the slope is smaller than 45” from 
the horizontal line (see Fig. 3(b)), the line can be 
considered to be closer to horizontal than vertical, 
otherwise closer to vertical (see Fig. 3(c)) [16]. For 
each case, the value of yP can be approximated as 
follows : 

if 4 < 45” 

I’At(Ax), 
fL = (vol), 

if4>45” 

(WP . 

Using equations (8) and (9), the base liquid fraction 
at the computational cells where the phase change 
occurs can be calculated. However, the method 
described above frequently brings about a negative 
value of fbp, which leads to physical violation. Two 
approaches can be thought of; the one is to be forced 
to calculate using the negative values and the other is 
to shift the negative component of fb to the neighbor 
cell located in the opposite direction to the melting 
front direction, e.g. the south in Fig. 3(b) and the west 
in Fig. 3(c) : 

fb = 1 + f; (v~l)~/(Ax), 
s 

@YY)s 

f”p = 0 (10) 

fb = 1 + f; (v~l)~/(Ay)~ 
W 

Ww 

f; = 0. 

The stability and accuracy for enc;h approach were 
thoroughly examined through the test problems 
explained later. It was concluded that the latter-shift 
method is somewhat superior to the former-negative 
value method from a viewpoint of the stabilized con- 
vergence of computation. On the test problem 1 where 
the liquid layer increases continuously as time 
proceeds, almost the same results were acquired ; but 
on the test problem 2 where the liquid layer forms its 
peak in thickness with time and decreases gradually 
after the peak owing to the reduced surface tem- 
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perature of the heating plate, the divergence does fre- 
quently happen by the former-negative method during 
the decreasing process of the thickness. 

For an assumed or updated solid velocity, the local 
liquid fraction in control volume P, can be solved 
iteratively. That is, after the solver returns the 
(k+ l)th temperature field, the (k+ l)th liquid frac- 
tion field is updated using equation (1 l), a rearrange- 
ment of equation (7) : 

fg* = SteAt/(vol), a,O,+asOs+a,O, 

f$” = &(f”,*-f;)+f;. (11) 

The sequence of steps in the important procedure 
of calculation is : 

I. Assume a solid velocity V. 
2. Calculate the velocity, pressure and temperature 

field. 
3. Calculate the liquid fraction field from tem- 

perature field. 
4. Return to step 2 until the proper convergence 

condition is satisfied. 
5. Update the solid velocity V and adjust the base 

liquid fraction. 
6. Return to step 2 with updated solid velocity V. 

Iterate until the velocity satisfies the force balance 
(equation (6)). 

7. Increase the time step and return to step 2. 

At step 5, the instantaneous solid velocity V and 
the average pressure p along the solid-liquid interface 
must satisfy equation (6), which can be expressed in 
terms of V in a difference form 

V = (g-jT/lM)Ar+ V”. (12) 

Since the liquid layer is very thin, the pressure field 
in it is sensitively dependent on the solid velocity. 
Accordingly, if the average pressure and the solid 
velocity are underrelaxed with the previous iterative 
values, so many iterations are needed in order to 
satisfy the equation of force balance as much as the 
accuracy of the numerical calculation demands. Such 
a method has a difficulty in selecting the proper relax- 
ation factors as well. Moreover, even using very small 
relaxation factors, there does exist a possibility of 
divergence according to the complexity of the prob- 
lem. 

Therefore, instead of using equation (12), it was 
used in a modified form. 

f(V) = (g-p/‘lM)At+ V” - V = 0. (13) 

As a result, the process to obtain the solid velocity 
V was replaced by finding the root of f(V) in the 
above equation. Referring to the velocity V” at the 
previous time step, the function f(V) is bracketed in 
the interval containing the root. As the algorithm to 

find the root in the present work, the bisection method 
was used on account of its simplicity and stability. 

TEST PROBLEMS 

The present numerical methodology is tested for 
two problems: The first is to evaluate the unsteady 
behavior in the representative problem often utilized 
in the field of direct contact melting. The second is a 
kind of conjugate problem, a rather complicated sys- 
tem consisting of a phase change material and a cop- 
per block as a heating plate. 

Test problem 1 
Problem descripfion. The problem is schematically 

shown in Fig. 4 with the boundary conditions. The 
solution by the steady state method is available and 
can be compared easily with that by the present 
method. 

Initially, the heating plate and the solid phase 
remain at a constant temperature (the melting point 
of PCM) and in contact directly without a liquid layer 
between them. The temperature of the heating plate 
rises abruptly to T, and the melting starts. 

It is noted that as melting proceeds, the height of 
the solid phase is reduced and, consequently, the force 
exerted on the liquid layer becomes smaller and 
smaller with time. However, though there are no 
difficulties in including the effect of reducing height in 
calculation, it is impossible for the system to com- 
pletely reach steady state and difficult to strictly com- 
pare with the result of the conventional steady state 
solver. Accordingly, we assume that the height of solid 
phase does not change, in fact, which does not bring 
about a serious result because the timewise variation 
of pressure by the height reduction is not so fast 
under given conditions in this problem. 

The calculation was performed in a non-dimen- 
sional form, but the phase change material was con- 
sidered to be an ice and the nondimensional par- 
ameters were obtained on the base of the ice. A 
number of calculations to verify the method presented 
here were carried out, but it was found that the charac- 
teristics are almost the same. Therefore, only two 
results will be reported here and their conditions are 
listed in Table 1. 

A I5 x 14 grid was used, spaced uniformly in the y- 
direction, but spaced partially non-uniformly near the 
exit region in the x-direction. 

Results. Figure 5 for Case A, being enlarged by 200 
times in the y-direction, shows the velocity field and 
the liquid-solid interface at times t = 8 x 10m6, 
t=2x10-5, and t = 2x 10e4 (15 s) which cor- 

Table I. Conditions in test problem I 

Case A 
Case B 

Sle M Pr 9 

1.266x10-' 1 13.44 5.521 x IO” 
1.266 10 13.44 5.521 x IO” 
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FIG. 4. Sketch of problem I and the boundary conditions. 

responds to the time when the system completely 
reaches the steady state. As evidenced in these figures, 
the liquid-solid interface is utterly linear and parallel 
to the heating plate. That is an expected phenomenon 
at lower Ste number (usually less than O.l), in which 

the dominant effect upon the heat transfer is heat 
conduction and is well known from previous studies. 

Figure 6, being enlarged by 100 times, corresponds 
to Case B and has almost the same trend to Fig. 5. 
Though it is impossible to observe visually, the liquid 

(a) t=8x10e6, 6 =4.442~10-~ 

(b) t=2x105 6 =6.820~10-~ 

FIG. 5. Velocity vectors and the liquid-solid interface (Case A); (a) I = 8 x 10m6, 6 =4442x 10m4; 
(b) I = 2x lo-‘, 6 =6.820x IOW; (c) I = 2x 10-4. 6 = 1.055x IO-‘. 
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(a) t=3.2x10w7, 6=7.787x10-4 

(b) t=8~10-~, 6=1.183~10-~ 

(c) t=8~10-~, 6=1.785~10-~ 

FIG. 6. Velocity vectors and the liquid-solid interface (Case B); (a) I = 3.2x 10d7, 6 = 7.787~ IO-‘; 
(b) I = 8x IO-‘,6 = 1.183x IO-‘:(c) I = 8x 10-6,6 = 1.785x IO-‘. 

layer along the flow direction gradually increases in 
thickness, but the difference between the minimum 
near the center line and the maximum near the exit is 
less than only 0.1%. 

The timewise variation of the average thickness of 
liquid layer is shown in Fig. 7 in a non-dimensional 
form. In this figure, the thickness evaluated by the 
steady state analysis [5, 171 was expressed. It is clear 
that the system in computation approaches the steady 
state as time proceeds and the thickness is on the 
whole in good agreement with that by the previous 
steady state method. 

Figure 8 shows the heat transferred from the heat- 
ing plate and the latent and sensible heat absorbed in 
the phase change material, where the heat transfer 
rate is transformed in a dimensionless form scaled by 
mv- rd. 

The apparent veiocity of solid phase and the melting 
rate are shown in Fig. 9 in a non-dimensional form. 
In the present work, the direction of the melting rate 
was taken as the opposite direction of the solid move- 

(b) 

t I I II 11 11 11 
0.0 5.0 10.0 

time [xl O-7 

(4 
FIG. 7. Timewise variation of the average thickness of the 

liquid layer (problem 1) ; (a) Case A, (b) Case B. 
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4 
solution of steady state method --- 

(a) 

[xl 0314. 

2 
G= 
zi 
2 2. 

(b) 0. 

%au of steady state method --- 

O/!g& 
0 5.0 

time [xl 0-l 

.O 
time 

2.9 [xl o- ] 

3 

FIG. 8. Timewise variation of the heat transfer rates (qua,, : 
heat transferred from the heating plate, q,.,.: latent heat, 

qxn. : sensible heat) (problem I) ; (a) Case A, (b) Case B. 

ment for convenience, instead of the normal direction 
of the liquid-solid interface. 

In direct contact melting, the steady state generally 
means the situation that the velocity of solid phase 
becomes equal to the melting rate. Accordingly, it is 
found that Fig. 9 completely shows such a behavior 
by passing the transient process from the initial state 
with the solid velocity of zero and the melting rate of 
infinity. 

Concluding remarks. It is noted through Figs. 6-9, 
that the system in computation approaches the steady 
state passing the transient process. Moreover, it is 
emphasized that the thickness of the liquid layer. 

(4 

(b) 

Vsora of steady state method --- 

1.0 
time 

1x1 093.0c’- 

Vsottd of steady state method --_ 

FIG. 9. Timewise variation of the apparent velocity of solid 
and the melting rate (problem 1); (a) Case A, (b) Case B. 

the heat flux through the heating plate and the velocity 
of solid phase in the steady state are in good agreement 
with those by the earlier analysis. As stated earlier, 
however, the steady state analysis compared here has 
a limitation from a viewpoint of accuracy because 
only the heat conduction was considered as the mech- 
anism of heat transfer across the liquid layer. There- 
fore, in a region of higher Ste number, it is natural 
that the effect of heat convection begins to appear 
and the discrepancy between the results increases by 
degrees, as shown in these figures. 

The heat flux through the heating plate in Fig. 8 
and the melting rate in Fig. 9 have very large values 
at the early stage immediately after the melting starts. 
The reason is that the liquid layer is extremely thin 
and, consequently the thermal resistance across the 
layer becomes significantly small. As is well known, 
it is seen that in the lower Sfe number as shown in 
Fig. 8(a), the heat transferred from the heating plate 
is mainly consumed in melting, i.e. the latent heat, but 
in the higher Ste number, the ratio of sensible heat 
increases markedly. 

Summarizing the above, it is assured that the pres- 
ent methodology has sufficient validity and accuracy 
in calculating the transient direct contact melting 
problem. 

Test problem 2 
Problem description. The second test problem, deals 

with a kind of a conjugate problem, shown sche- 
matically in Fig. IO which is not proportional to the 
actual size and exaggerated in the region of PCM. 

In this problem, the heating plate is regarded as a 
copper block whose initial temperature is maintained 
at T,. The boundary conditions were as depicted in 
Fig. IO and the copper block is insulated except at the 
surface contacting with the phase change material. 

The melting situation is almost the same as that of 
the former test problem, but owing to the insulation 
of the heating plate, the surface temperature of the 
heating plate becomes lower and lower as melting 
proceeds. Furthermore, no assumptions for the reduc- 
ing height of solid phase were different from the test 
problem 1. 

We treated this problem in a dimensional form since 
the surface temperature of the heating plate, usually 
used in Stefan number, does change with time. Even 
though the initial temperature of copper block is used 
in place of surface temperature, it could not have a 
role to characterize the system at all. 

The grid system is shown in Fig. I I. Total grid 
number is 13 x 24; spaced in the x-direction similar 
to problem 1, but divided into two regions in the y- 
direction, i.e. the copper block and the PCM were 
equally divided into 12 grids, respectively. 

A number of calculations were carried out changing 
the initial temperature and the height of copper block. 
In the present paper, only one result will be reported ; 
the specification of copper block is 0.1 m in half width 
and 0.05 m in height and its initial temperature is 
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u.u = 0 
copper as 

- -=o, 21,u=o 
- ax 

ZD 
ao x 
-=o. 1l.U =o 
ay 

FIG. IO. Sketch of problem 2 and the boundary conditions 

20°C and the solid phase of 0.1 m in height remains 
at melting temperature 0°C. 

Resulfs. The velocity field in the liquid layer showed 
the same pattern as that in problem 1, as shown in 
Figs. 5 and 6, and is omitted here. Nevertheless, the 
thickness of liquid layer along the flow direction is 
somewhat different from that in problem I. It is in the 
same pattern as it increases in the flow direction and 
shows its maximum value at the exit. However, the 
thickness discrepancy between the minimum and 
maximum is by far a greater amount than that in 
problem 1 and amounts to about 4.5% although it 
changes with time. 

The reason is obviously the fact that the surface 
temperature of the heating plate varies along the sur- 
face and, accordingly, the heat flux normal to the 
liquid layer also varies along the surface. The tem- 
perature distribution in the copper block is shown in 
Fig. 12. From the figure, it is found that the extent of 
non-uniformity of surface temperature increases with 
time, which makes the variation of thickness more 
remarkable. 

Figure 13 shows the timewise variation of the aver- 
age thickness. The thickness increases relatively fast 
as shown in problem 1 until its peak and decreases 
very slowly after the peak, which is caused by the 
reducing surface temperature. 

The heat transferred from the copper block qwtill. 
the latent heat q,n,n and sensible heat qrcnr absorbed 
into the PCM, and the heat extracted from the copper 
block qcoOl are depicted in Fig. 14 as the melting pro- 
ceeds. Although qO,, should be theoretically equal to 

4 Wdl7 i: was compared in order to verify the accuracy 
of the calculation. 

The timewise variation of velocity is shown in Fig. 
15. The melting rate corresponding to q,.,. slightly 
undulates in earlier stage after melting starts. 

Concluding remarks. The test problem shows that 
the present methodology can be applied to a rather 
complicated problem and clearly reveals the transient 
process of direct contact melting. 

From a standpoint of the accuracy of calculation, 
it can be asserted that qw.,, and qcOO, are nearly over- 
lapped and they denote a summation of q,.,. and qwes. 
On the other hand, the undulation of q,.,” appears 
partially, which may be attributed to the fact that the 
melting rate slightly varies with the location of the 
liquid-solid interface placed in a cell even under the 
same condition. In addition, from the analysis about 
the overall heat balance integrated through the entire 
calculation time, the integrated quantity of qw.,, differs 
only by 0.1% from the summation of those of q,.,, 

and qrenr. but the difference between q,,.all and qOOl 
amounts to 5%. 

FIG. I 1. Grid system of problem 2. 

-T 
PCM 

i 
copper 

1 
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(a) t=0.6 set 

23 

t-----l 
(b) t=2.4 set 

(c) to150 set 

FIG. 12. Temperature distribution in the copper block (prob- 
lem 2) ; (a) f  = 0.6 s, (b) I = 2.4 s. (c) f  = 150 S. 

time (set) 

FIG. 13. Timewise variation of the average thickness of the 
liquid layer (problem 2). 

FIG. 14. Timewise variation of the heat transfer rates (r~~.,i : 
heat transferred from the heating plate, qi.,.; latent heat, 
qun.: sensible heat, q-i: heat extracted for copper block) 

(problem 2). 

FIG. IS. Timewise variation of the apparent velocity of solid 
and the melting rate (problem 2). 

It can be summarized that the tendency of the heat 
transfer and the velocity does not contradict the physi- 
cal situation and the accuracy of the computation is 
good enough to have a reliability in an engineering 
sense. Above all, it should be emphasized that test 
problem 2 was solved with a simplicity and a feasibility 
in spite of a complicated situation. 

CONCLUSION 

The main purpose of the present work is to provide 
a solution for the transient behavior of the direct 
contact melting process. To treat easily and reason- 
ably a matter related to an unknown velocity of solid 
phase at each time step was the key in solving the 
present moving boundary problem. The validity of the 
present method was examined through test problem 1 
and the applicability to a wide range of problems was 
tested through test problem 2. 

In conclusion, the present method can be utilized 
in comprehending the transient behavior of direct 
contact melting and also can be applied to a variety 
of the problems, which accompany the phase change 
with moving body. Improvements in the present 
method will continue in the future with respect to the 
efficiency and the accuracy. 
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